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Abstract

Inequalities on reaction time distribution functions for parallel pro-
cessing models with an unlimited capacity assumption are presented,
extending previous work on first-terminating and exhaustive stopping
rules to kth-terminating processes. This extension thus generates pre-
dictions for situations in which the observer’s response is determined
by the kth-terminating subprocess. Moreover, methods to determine
the number k are discussed.
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1 Introduction

Many models of information processing in a perceptual/cognitive task com-

monly assume that reaction time (RT) can be decomposed into several sub-

processes comprising, among others, stimulus encoding time, response selec-

tion time, and motor execution time . In addition to processing architecture,

a problem of considerable importance has been the stopping rule the informa-

tion processing system employs when sufficient information has been acquired

to make a correct response. Many of these results have been reviewed in [1],

[2], and [3]. The focus of the present paper are stopping rules for parallel

models extending results of [4] and [5]. For recent results regarding stopping

rules for serial models, see [6].

In the following, a parallel model is informally defined as a parallel sys-

tem with n processing channels represented by a collection of nonnegative

random variables T1, T2, . . . , Tn which refer to the processing durations of the

channels. The term channel is used here in a broad sense. For example, in a

redundant-signals task, where human observers monitor two or more sources

of information for a target stimulus, the Tk refer to the signal-specific pro-

cessing times. Channels may interact with each other; thus, processing times

T1, T2, . . . , Tn, are allowed to be stochastically dependent. In accordance with

the terminology proposed in [5], a parallel system is called first-terminating

if it initiates a response as soon as the first channel finishes processing. Thus,

the contribution of the channels’ processing time to overall reaction time is

the time needed by the fastest channel to finish processing, i.e., the min-

imum of the Tk. Alternatively, a parallel system is called exhaustive if it

cannot initiate a response unless all its channels have finished. In this case,

overall reaction time is given by the time of the slowest channel, i.e., the
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maximum of the Tk. Here, the contributions of additional components like

stimulus encoding time, response selection time, or motor execution time are

all subsumed under this same random variable, for simplicity. Often, these

are summarized by adding another random variable (sometimes, a constant)

to the maximum/minimum random variable.

The redundant target paradigm mentioned above is a typical example

of a situation where a first-terminating stopping rule has been suggested.

The subject is instructed to respond to the first target detected which, in

a bimodal experiment with both visual and auditory targets, could either

be the visual or the auditory signal (cf. [7]; [8]; [9]; [10]). While parallel

models with a first-terminating or an exhaustive stopping rule are plausible

mechanisms in many situations, note that these rules only constitute two

extreme cases of a more general situation where overall reaction time is de-

termined by k channels having finished (k = 1, . . . , n). Depending on the

specific conditions of the experiment or on instructions given to subjects, the

general kth-terminating rule (with k different from 1 or n) may yield a more

realistic description of the data.

Take, for example, the same-different paradigm (e.g., [11]). On any trial,

two letter strings are presented to the subject, e.g.

b f w s

b f r s

The subject’s task is to decide as fast as possible whether the strings are the

same or different. A simple model for this situation would assume channels

corresponding to the columns working in parallel and trying to match the

letters. Consider the condition where both strings consist of entirely differ-

ent letters. A ”different” response could be initiated as soon as one of the
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channels has registered a mismatch. However, if accuracy rather than speed

is emphasized, it is not implausible to assume that a ”different” response is

initiated only after k (k > 1) of the channels indicate a mismatch.1

In the next section, after introducing some necessary terminology and

definitions, distribution inequalities for parallel models are derived involving

different numbers of channels in generating the response time distribution.

In particular, a theorem for general kth-terminating models extends a result

for the second-terminating (k = 2) case in [4]. The inequalities are illustrated

by a numerical example with dependent processing times. Then, means to

determine the number k of a system from the data are discussed, while proofs

are deferred to the final section.

2 Distribution inequalities: kth-terminating

models

Let T1, T2, . . . , Tn be jointly distributed random variables; the corresponding

order statistics are the Ti’s arranged in nondecreasing order

T1:n ≤ T2:n . . . ≤ Tn:n

Specifically, Tk:n is called the kth order statistic. When actual equalities ap-

ply, one does not make any requirement about which variable should precede

the other one.

This definition does not require that the Ti’s be identically distributed, or

that they are independent, or that densities exist. Many classical results deal-

ing with order statistics were originally derived in the i.i.d. case (independent

1No claim is made here that this type of model gives the most plausible account of all
empirical results known so far. In fact, a number of different models have been discussed
in the literature (see, e.g., [1], p. 153).
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identically distributed) with a common continuous (cumulative) distribution

(see [12]). In the reaction-time modeling context, existence of a multivariate

density for the T1, T2, . . . , Tn can usually be taken for granted while neither

independence nor identical distributions seem particularly plausible.

Definition 1. Let T1, T2, . . . , Tn denote the random channel processing

times of a parallel reaction time model. The model is called parallel kth-

terminating if its reaction time (RT) is equal to the kth order statistic of

T1, T2, . . . , Tn, i.e.

RT = Tk:n.

The number k is also called the order of the stopping rule. In particular, the

model is called parallel first-terminating if

RT = min
i=1,...,n

Ti = T1:n

It is called parallel exhaustive if

RT = max
i=1,...,n

Ti = Tn:n

Throughout this paper, parallel models are assumed to have unlimited

processing capacity, that is, the system allots the same amount of ”capac-

ity” to a given channel no matter how many additional channels operate at

the same time. In many empirical situations, unlimited capacity can be ex-

pected to hold at most for a small number of parallel channels. The notion

of unlimited capacity can be made precise by considering the joint probabil-

ity distribution functions of the times Ti over experimental conditions with

different sets of active channels. Suppose we have a subset of m out of the n
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channels of the system. Unlimited capacity stipulates that their (marginal)

distributions are the same no matter how many and which of the remaining

n−m channels are active. The definition below is slightly less restrictive re-

quiring the marginal distributions to be identical only on the m-dimensional

”diagonal” (t, . . . , t) rather than the full set (t1, t2, . . . , tm).

Definition 2. Let B = {i1, i2, . . . , im},m ≤ n be the set of channels

active under a given experimental condition and let PB denote the corre-

sponding probability measure implied by the m-channel model; an n-channel

parallel model is said to have unlimited capacity (on the diagonal) if

PB(Ti1 ≤ t, Ti2 ≤ t, . . . , Tim ≤ t) =

P (Ti1 ≤ t, Ti2 ≤ t, . . . , Tim ≤ t)

for all B ⊂ {1, 2, . . . , n} and all t ∈ <+,

where P denotes the probability measure corresponding to the model where

all n channels are active2. Note that this definition of unlimited capacity

neither implies nor is implied by stochastic independence of the processing

times.

Consistent with the order statistics notation, distribution functions for

the kth-terminating parallel model with n channels will be denoted by Fk:n(t).

In particular, for the first-terminating and exhaustive models with n chan-

nels,

F1:n(t) = P (T1:n ≤ t) (first-terminating n-channel process)

2For simplicity, the specification ”on the diagonal” will not be mentioned explicitly
below.
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and

Fn:n(t) = P (Tn:n ≤ t) (exhaustive n-channel process).

Moreover, we write F
(i)
k:n−1(t), F

(ij)
k:n−2(t), etc. for the distribution function if

all channels but channel i, all channels but channels i, j, etc. are active,

respectively. Thus, using the notation of Definition 2 with C = {1, 2, . . . , n}
we have, for example,

F
(i)
n−1:n−1(t) = PC\{i}(T1 ≤ t, T2 ≤ t, . . . , Ti−1 ≤ t, Ti+1 ≤ t, . . . , Tn ≤ t).

By the unlimited capacity assumption, this equals

P (T1 ≤ t, T2 ≤ t, . . . , Ti−1 ≤ t, Ti+1 ≤ t, . . . , Tn ≤ t).

The following is the main result of this paper. It provides an upper and

a lower bound for the distribution function of a parallel kth-terminating

parallel model in a very general setting. Its proof is deferred to the last

section.

Theorem. For an unlimited capacity, kth-terminating n-channel parallel

model (1 ≤ k ≤ n − 2, n > 2), the following holds with integer s1, . . . , sk+1

and 1 ≤ s1 < . . . < sk < sk+1 ≤ n

max
i

F
(i)
k:n−1(t) ≤ Fk:n(t)

≤ min
s

{
F

(s1)
k:n−1(t) + . . . + F

(sk+1)
k:n−1 (t)− F

(s1s2)
k:n−2 (t)− F

(s2s3)
k:n−2 (t)− . . . F

(sksk+1)
k:n−2

}
,

(1)

for any t, where the maximum is taken over all i = 1, . . . n − 1 and the

minimum is taken over all vectors s = (s1, . . . , sk+1) .

As mentioned above, this theorem generalizes Theorem 1 in [5] and The-

orem 2 in [4] where the result was given for k = 1 and k = 2, respectively.
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Definition 3. If all marginal distributions F
(i)
k:n−1, F

(ij)
k:n−2, are independent

of the choice of i and j, the parallel system is called marginally invariant.

As an immediate consequence of the theorem, for marginally invariant

parallel systems, the inequalities take a specially simple form3

Corollary. For a marginally invariant parallel system, the inequalities

of the theorem become

Fk:n−1(t) ≤ Fk:n(t) ≤ (k + 1)Fk:n−1(t)− kFk:n−2(t) (2)

In general, not much is known about the sharpness of the upper and the

lower bounds in the above inequalities. Obviously, for t going to infinity,

the inequalities become trivial. Thus, only for values of t not too large can

these inequalities be expected to be useful for testing the assumption of a

kth-terminating parallel stopping rule.

The above result is illustrated by a numerical example4 with a specified

multivariate distribution function with dependent random processing times

(cf. [5]).

3Note that assuming T1, T2, . . . , Tn to be exchangeable random variables implies
marginal invariance (for a definition of exchangeability, see e.g. [13].

4This example was first suggested by D. Vorberg for the first-terminating/exhaustive
case.
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3 Example: A kth-terminating parallel model

with conditionally independent exponential

channel processing times

On any trial, the channel processing times are conditionally independent

exponential random variables with rate α. The rates are not constant but

fluctuate across trials such that α = Aβ, where the β reflects channel-specific

properties, whereas A represents the system’s momentary level of alertness

which is itself exponentially distributed with parameter τ . The processing

time distribution is characterized by its joint survivor-function, SN , defined

as

SN(t1, . . . , tn) = PN(T1 > t1, . . . , Tn > tn).

Note that the distribution is indexed by N = {1, 2, . . . , n} to make explicit

that it refers to the situation where processing is initiated on all n channels.

(For simplicity, we also write N − 1 for {1, 2, . . . , n − 1}). By randomizing

A, SN is obtained as

SN(t1, . . . , tn) =
∫ ∞

0
SN(t1, . . . , tn | A = a)τ exp(−τa)da

=
∫ ∞

0

n∏

i=1

exp(−aβti)τ exp(−τa)da

=
∫ ∞

0
exp(−aβ

n∑

i=1

ti)τ exp(−τa)da

=
τ

τ + β
∑n

i=1 ti
(3)

It is straightforward to derive from (3) the joint survivor function for any

subset of channels by using the fact that, e.g.,



Generalized Stopping Rules 10

PN−1(T1 > t1, . . . , Ti−1 > ti−1, Ti+1 > ti+1, . . . , Tn > tn)

= SN(t1, . . . , ti−1, 0, ti+1, . . . , tn).

Obviously, the model obeys both unlimited capacity and marginal invariance.

In order to derive the distribution function of the kth-order statistics, define

for any n ≥ 1, 0 ≤ k ≤ n

Sk,n(t) =
∑

1≤i1<i2<...<ik≤n

P (Ti1 > t ∩ Ti2 > t ∩ . . . ∩ Tik > t). (4)

Moreover, let mn(t) equal the number of events among the {Ti > t}i=1,...,n

that occur. A very useful tool in the theory of extreme values is the following

identity.

Lemma ([14], Theorem 1.4.1).

P (mn(t) = s) =
n−s∑

j=0

(−1)j

(
j + s

s

)
Sj+s,n(t).

Inserting the survivor function of the model into (4) yields

Sk,n(t) =
∑

1≤i1<i2<...<ik≤n

τ

τ + βkt

=

(
n

k

)
τ

τ + βkt

using marginal invariance and, from the lemma,
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P (mn(t) = s) =
n−s∑

j=0

(−1)j

(
j + s

s

)(
n

j + s

)
τ

τ + β(j + s)t

=

(
n

s

)
n−s∑

j=0

(−1)j

(
n− s

j

)
τ

τ + β(j + s)t
. (5)

Recalling the definition of order statistics leads to

P (Tk:n ≤ t) = P (mn(t) ≤ n− k)

=
n−k∑

s=0

P (mn(t) = s).

Finally, inserting (5) into the above yields the desired distribution function

of the kth order statistic

P (Tk:n ≤ t) =
n−k∑

s=0

(
n

s

)
n−s∑

j=0

(−1)j

(
n− s

j

)
τ

τ + β(j + s)t
.

A numerical example. The figure below illustrates the distribution

inequalities from the corollary for this example with values n = 8 and k = 2,

where the parameters of the multivariate survivor function have been set to

τ = 50 and β = 1:

F2:7(t) ≤ F2:8(t) ≤ 3F2:7(t)− 2F2:6(t)

[Insert Figure 1 about here]
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4 Determining the order of the stopping rule

Consider an experimental situation with n parallel channels operating un-

der unlimited capacity where one would like to gain information about the

order of the stopping rule, i.e., the number k. Typically, k depends on the

specific experimental condition under which the response times are collected.

Presumably, the more the speed of the responses is emphasized in the in-

struction, the smaller k will be. The question is, how can k be determined

quantitatively from considering appropriate distribution inequalities without

making any assumptions about the parametric type of the RT distributions

or the dependence structure of the channels’ operating times? For simplicity,

only the marginally invariant case will be discussed here.

From the definition of order statistics, for any number n of channels

Fk:n(t) ≤ Fk′:n(t) with k > k′. If the two distribution functions refer to

two different speed conditions, this inequality is a testable hypothesis on the

order of the distributions under these two conditions. However, there is no

way to gain quantitative information about k or k′ from this inequality. In

fact, k and k′ could be any number between 1 (first-terminating model) and

n (exhaustive model).

On the other hand, the inequalities derived earlier do yield information

about the order k. Let Gn(t) denote the observable (rather, estimable) re-

sponse time distribution in an n-channel situation. If the underlying stopping

rule is of order k, then the upper bound for Gn(t) according to Corollary 1

is

(k + 1)Gn−1(t)− kGn−2(t).

This can be rewritten as

[kGn−1(t)− (k − 1)Gn−2(t)] + [Gn−1(t)−Gn−2(t)],
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where the first term in brackets is equal to the upper bound for a stopping

rule of order k − 1 and the second term in brackets is nonnegative because

of the lower bound given in Corollary 1. Thus, a first observation is that the

upper bound for a stopping rule of order k cannot be stricter than the upper

bound for a stopping rule of order k− 1. In other words, even if data are not

consistent with the upper bound of the (k − 1)th-terminating stopping rule,

they may still be consistent with the kth-terminating rule. Second, another

way to write the upper bound is

[2Gn−1(t)−Gn−2(t)] + (k − 1)[Gn−1(t)−Gn−2(t)].

Here, the first term in brackets is the upper bound for a first-terminating rule.

This implies that the order can, in principle, be determined by selecting the

smallest integer number k that makes the upper bound consistent with the

data:

order ≡ min{k|Gn(t) ≤ (k + 1)Gn−1(t)− kGn−2(t), for all t}

5 Concluding remarks

While the theorem in this paper generalizes a previous result on first-terminating

and exhaustive processing to general kth-order processing, a number of prob-

lems remain open for further investigation. First, as already mentioned

above, not much is known about the sharpness of the bounds in the the-

orem and the corollary. Comprehensive numerical studies of the distribution

inequalities for various classes of multivariate distribution functions are called

for. From these one might also be able to infer multivariate dependence con-

ditions that yield tighter bounds in the distribution inequalities. Second, the
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assumption of unlimited capacity, although given here in a slightly less re-

strictive form, can be shown not to be a necessary condition for the theorem

to hold and, thus, may possibly be replaced by something more plausible

from an empirical point of view. Third, no acceptable statistical test for the

inequality involving the upper bound, or for the method of determining the

order outlined in the last section, is known to the author. Finally, it should

not escape the reader that the basic tool for deriving the inequalities, the

variation of the number of channels, is a very common experimental proce-

dure with ramifications far beyond the context mentioned here. For example,

in the area of visual search, the investigation of the effects of varying display

set size is a basic tool for studying visual attention (eg., [15]). It is hoped

that the type of results presented here will be helpful in rigorously testing

parallel processing models in many other areas as well.

6 Appendix A: Proof of the Theorem

The response time distribution of a kth-terminating parallel model with n

channel processing times T1, T2, . . . , Tn is defined by the kth order statistic,

i.e.

Pn(Tk:n ≤ t) = Pn(at least k of T1, T2, . . . , Tn are less than or equal t).

= Fk:n(t)

where Pn refers to the probability measure corresponding to the joint distri-

bution of T1, T2, . . . , Tn. Moreover,

Pn−1(Tk:n−1 ≤ t) = Pn−1( at least k of T1, T2, . . . , Ti−1, Ti+1, . . . , Tn

are less than or equal t).

= F
(i)
k:n−1(t)
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By unlimited capacity, the subscripts n, n− 1, etc. can be dropped from the

probability measure P .

For arbitrary integers r1, r2, . . . , rk with 1 ≤ r1 < . . . < rk ≤ n define

Br1,r2,...,rk
(t) = {Tr1 ≤ t} ∩ {Tr2 ≤ t} ∩ . . . ∩ {Trk

≤ t}

and let

A(t) =
⋃

r1,r2,...,rk
1≤r1<...<rk≤n

Br1,r2,...,rk
(t).

For notational convenience, we drop the variable t in the set notation. Then,

obviously,

Fk:n(t) = P (A) .

Moreover, writing

A(i) =
⋃

r1,r2,...,rk

1≤r1<...<rk≤n

i/∈{r1,...,rk}

Br1,r2,...,rk

yields

F
(i)
k:n−1(t) = P

(
A(i)

)
.

The following technical lemma will allow us to make use of a Bonferroni-type

inequality (see appendix) to derive the desired upper bound of the theorem.

Lemma 1. With the notation introduced above, for arbitrary integers

s1, . . . , sk+1 with 1 ≤ s1 < . . . < sk+1 ≤ n

A = A(s1) ∪ A(s2) ∪ . . . ∪ A(sk+1).

Proof: By construction, A(s1)∪A(s2)∪ . . .∪A(sk+1) is contained in A. For the

other direction, consider the set Br1,...,rk
for arbitrary r1, . . . , rk with 1 ≤ r1 <
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. . . < rk ≤ n. To show that Br1,...,rk
is contained in A(s1)∪A(s2)∪ . . .∪A(sk+1),

define the set difference of the two index sets,

J = {s1, . . . , sk+1} \ {r1, . . . , rk}.

Since J 6= ∅, by construction Br1,...,rk
is contained in

⋂
p

p∈J

A(p).

This proves the lemma.

We now consider the case where two of the channels, i and j, say, are

dropped. Extending the above notation, let us write

A(ij) =
⋃

r1,r2,...,rk

1≤r1<...<rk≤n

i,j /∈{r1,...,rk}

Br1,r2,...,rk

yielding

F
(ij)
k:n−2(t) = P

(
A(ij)

)
.

Lemma 2. With the notation introduced above, for any i, j (i 6= j) from

{1, . . . , n}
A(ij) ⊂ A(i) ∩ A(j).

Proof: By construction, A(ij) ⊂ A(i) and A(ij) ⊂ A(j). QED

We are now ready to derive the upper bound for the RT distribution

function with n channels, F2:n(t). By Lemma 1,

P (A) = P (A(s1) ∪ A(s2) ∪ . . . ∪ A(sk+1))
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≤ P (A(s1)) + P (A(s2)) + . . . + P (A(sk+1))

−P (A(s1) ∩ A(s2))− P (A(s2) ∩ A(s3))− . . .− P (A(sk) ∩ A(sk+1))

≤ P (A(s1)) + P (A(s2)) + . . . + P (A(sk+1))

−P (A(s1s2))− P (A(s2s3))− . . .− P (A(sksk+1)) (6)

with the first inequality being an application of the Bonferroni-type inequal-

ity (Appendix B) and the last inequality following from Lemma 2. Trans-

lating the above results from the set notation into probability distributions

leads, for any t, to the upper bound for Fk:n(t) in the theorem. A smallest

upper bound is obtained, of course, by taking the minimum over all vectors

s. The lower bound follows trivially from the set definitions of A and A(i).

This completes the proof of the theorem.

7 Appendix B: A Bonferroni-type Inequality

The classical Bonferroni inequalities have been introduced by [16]. Let

A1, A2, . . . , An be a sequence of events in a probability space. For exam-

ple, the second order Bonferroni inequality is

n∑

i=1

P (Ai)−
n∑

i<j

n∑
P (Ai ∩ Aj) ≤ P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P (Ai)

These bounds can be quite inaccurate and, therefore, improved bounds, re-

ferred to as Bonferroni-type inequalities, have been developed (see, e.g., [17];

[18]). The basic idea is to express

A = A1 ∪ (A2 ∩ Ac
1) ∪ (A3 ∩ Ac

2 ∩ Ac
1) ∪ . . . ∪ (An ∩ Ac

n−1 ∩ . . . ∩ Ac
1).

This immediately implies the following Bonferroni-type upper bound that is

used in the proof of the theorem:
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P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P (Ai)−
n−1∑

i=1

P (Ai ∩ Ai+1).
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8 Figure Captions

Figure 1. Distribution functions illustrating the inequalities of the corollary

for the example with conditionally independent exponential channel process-

ing times:

F2:7(t) ≤ F2:8(t) ≤ 3F2:7(t)− 2F2:6(t)


